The review presents a topological interpretation of some morphogenetic events through the use of well-known mathematical concepts and theorems. Spatial organization of the biological fields is analyzable in topological terms. Topological singularities inevitably emerging in biological morphogenesis are retained and transformed during pattern formation. It is the topological language that can provide strict and adequate description of various phenomena in developmental and evolutionary transformations. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. A topological inevitability of some developmental events through the use of classical topological concepts is discussed. This methodology reveals a topological imperative as a certain set of topological rules that constrains and directs embryogenesis. A breaking of spatial symmetry of preexisting pattern plays a critical role in biological morphogenesis in development and evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2012.05.004DOI Listing

Publication Analysis

Top Keywords

topological
9
topological singularities
8
biological morphogenesis
8
singularities symmetry
4
symmetry breaking
4
breaking development
4
development review
4
review presents
4
presents topological
4
topological interpretation
4

Similar Publications

Engineering Floquet Moiré Patterns for Scalable Photocurrents.

Nano Lett

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina.

While intense laser irradiation and moiré engineering have independently proven powerful for tuning material properties on demand in condensed matter physics, their combination remains unexplored. Here we exploit tilted laser illumination to create spatially modulated light-matter interactions, leading to two striking phenomena in graphene. First, using two lasers tilted along the same axis, we create a quasi-1D supercell hosting a network of Floquet topological states that generate controllable and scalable photocurrents spanning the entire irradiated region.

View Article and Find Full Text PDF

Multifunctional Mycobacterial Topoisomerases with Distinctive Features.

ACS Infect Dis

January 2025

Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.

Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.

View Article and Find Full Text PDF

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!