AI Article Synopsis

  • Thrombus formation and microbial invasion are significant challenges for blood-contacting devices, prompting research into new blood-compatible and antibacterial materials.
  • A novel class of polymers was created using dendronized PEG and octyne by altering their ratios, with their structures and properties thoroughly characterized through various scientific techniques.
  • The introduction of more hydrophilic PEG improved the polymers' stability and significantly reduced protein, platelet, and bacterial adhesion, highlighting their potential for enhanced compatibility in medical applications.

Article Abstract

Thrombus formation and microbial invasion are two major complications that impede the widespread application of blood-contacting devices. The development of new materials that have blood compatibility and antibacterial adhesion activity has gained increased attention. In this study, a new class of polymers composed of hydrophilic dendronized polyethylene glycol (PEG) methacrylate and hydrophobic octyne monomethyl ether-glycidyl methacrylate was synthesized via click chemistry and free radical polymerization. Different polymers were synthesized by changing the ratio of the two monomers. The structures of the synthesized polymers were characterized by (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Their physical properties such as molecular weight, polydispersity, and glass transition temperature were determined using gel permeation chromatography and differential scanning calorimetry. The synthesized polymers were coated on glass slides to prepare a series of polymeric surfaces. Contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy analysis showed that the polymeric surfaces had long-lasting stability. The introduction of the monomer dendronized PEG methacrylate to the polymers greatly improved the hydrophilicity of the polymeric surfaces. The blood compatibility of the synthesized polymers was evaluated by protein (bovine serum albumin and fibrinogen) adsorption and platelet adhesion assays. Their antibacterial adhesion ability was investigated using the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus. The results demonstrated that the amount of adsorbed protein, platelets, and bacteria on the polymeric surfaces decreased with increased content of the hydrophilic monomer dendronized PEG methacrylate in the polymers. However, no obvious difference was observed when such content exceeded 50 mol%. The results suggested that the new kind of polymer could be developed as a promising blood-contact coating material that may have extensive medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2012.04.012DOI Listing

Publication Analysis

Top Keywords

polymeric surfaces
16
blood compatibility
12
antibacterial adhesion
12
peg methacrylate
12
synthesized polymers
12
dendronized polyethylene
8
polyethylene glycol
8
compatibility antibacterial
8
adhesion activity
8
fourier-transform infrared
8

Similar Publications

Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.

Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.

View Article and Find Full Text PDF

Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.

View Article and Find Full Text PDF

Objective: This study aims to elucidate the impact of varying tourniquet application timings on postoperative pain and the bone cement interface following TKA.

Method: Patients who underwent TKA in our department between March 2021 and July 2023 were included in this study. They were randomly assigned to three groups: Group 1 used tourniquets throughout the operation, Group 2 applied tourniquets before the osteotomy, and Group 3 applied tourniquets after completing the osteotomy.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!