Cytotoxicity evaluation of magnetite (Fe3O4) nanoparticles in mouse embryonic stem cells.

Colloids Surf B Biointerfaces

Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.

Published: September 2012

Magnetite nanoparticles are expected to be applied in the medical field because of their biocompatibility and high saturated magnetization. In this paper, magnetite nanoparticles with a diameter of approximately 40 nm were evaluated for their safety by using mouse embryonic stem (mES) cells. First, various doses of magnetite nanoparticles were added to mES cells to find an optimal dose and to evaluate viability and keeping undifferentiated states of mES. The uptake of nanoparticles by mES cells was confirmed by using cytospin and transmission electron microscopy. Next, mES cells containing magnetite nanoparticles were collected by a magnet column 24h after the addition of magnetite nanoparticles, and the change in the ratio of those mES cells to the total mES cells was assayed by FACS 0, 4, 8, 12, 16, 24, 48 and 72 h after incubation. The result showed that the ratio decreased with time, indicating that the mES cells excreted the nanoparticles, for there was no change in the total number of cells. Based on these results, it was concluded that magnetite nanoparticles were safe to mES cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2012.04.003DOI Listing

Publication Analysis

Top Keywords

mes cells
32
magnetite nanoparticles
24
cells
10
nanoparticles
9
mes
9
mouse embryonic
8
embryonic stem
8
cells magnetite
8
nanoparticles mes
8
nanoparticles change
8

Similar Publications

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Polysaccharides from maggot extracts suppressed colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway.

Int J Biol Macromol

January 2025

Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:

Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.

View Article and Find Full Text PDF

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

This study aimed to design new hybrid compounds with imidazolidin-2,4-dione and morpholine rings as broad spectrum anticonvulsants. To achieve this goal, all compounds were evaluated in animal seizure models, namely the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and selected in the 6 Hz (32 mA) tests. The most promising compound, 5-isopropyl-3-(morpholinomethyl)-5-phenylimidazolidine-2,4-dione (19), demonstrated broader anticonvulsant activity than phenytoin or levetiracetam, with ED of 26.

View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!