We describe light scattering from a graphene sheet having a modulated optical conductivity. We show that such modulation enables the excitation of surface plasmon polaritons by an electromagnetic wave impinging at normal incidence. The resulting surface plasmon polaritons are responsible for a substantial increase of electromagnetic radiation absorption by the graphene sheet. The origin of the modulation can be due either to a periodic strain field or to adatoms (or absorbed molecules) with a modulated adsorption profile.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/24/245303DOI Listing

Publication Analysis

Top Keywords

light scattering
8
modulated optical
8
optical conductivity
8
graphene sheet
8
surface plasmon
8
plasmon polaritons
8
scattering medium
4
medium spatially
4
spatially modulated
4
conductivity case
4

Similar Publications

Plant Oil Nano-Emulsions as a Potential Solution for Pest Control in Sustainable Agriculture.

Neotrop Entomol

January 2025

Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt.

The increasing demand for sustainable and eco-friendly pest control methods has led to a growing interest in the development of novel, plant-based pesticides. In this study, we investigated the potential of nano-emulsions containing plant oils (Portulaca oleracea, Raphanus sativus, and Rosmarinus officinalis) as a new approach for controlling three major pests: Aphis gossypii, Spodoptera littoralis, and Tetranychus urticae. Using ultrasonication, we prepared stable and uniform nano-emulsions characterized by thermodynamic properties, dynamic light scattering (DLS), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The isolation of pure compounds from complex extracts is a crucial step in natural products (NPs) research. Historically, this process has been recognized to be slow and laborious. However, significant advancements have been made in isolation methods.

View Article and Find Full Text PDF

Dark-Field Absorbance Circular Dichroism of Oriented Chiral Thin Films.

J Phys Chem Lett

January 2025

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Dark-field and confocal approaches to circular dichroism (CD) spectroscopy of uniaxial thin films examine the relationship between symmetry and incoherence in the nonreciprocal CD response, or the component that is antisymmetric about the light propagation direction. Modifying a conventional CD spectrometer for low-angle scattering detection isolates incoherent contributions to nonreciprocal CD of drop-cast thin films, boasting 5-to-10-fold enhancements in CD dissymmetry parameters. Conversely, confocal detection suppresses the nonreciprocal CD response.

View Article and Find Full Text PDF

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

A targeted and synergetic nano-delivery system against infection for promoting wound healing.

Mater Today Bio

April 2025

Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China.

Purpose: infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds.

Patients And Methods: Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO-Cur-CAZ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!