Delay of polarization event increases the number of Cdx2-positive blastomeres in mouse embryo.

Dev Biol

Department of Embryology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.

Published: August 2012

During preimplantation mouse embryo development expression of Cdx2 is induced in outer cells, which are the trophectoderm (TE) precursors. The mechanism of Cdx2 upregulation in these cells remains unclear. However, it has been suggested that the cell position and polarization may play a crucial role in this process. In order to elucidate the role of these two parameters in the formation of TE we analyzed the expression pattern of Cdx2 in the embryos in which either the position of cells and the time of polarization or only the position of cells was experimentally disrupted. Such embryos developed from the blastomeres that were isolated from 8-cell embryos either before or after the compaction, i.e. before or after the cell polarization took place. We found that in the embryos developed from polar blastomeres originated from the 8-cell compacted embryo, the experimentally imposed outer position was not sufficient to induce the Cdx2 in these blastomeres which in the intact embryo would form the inner cells. However, when the polarization at the 8-cell stage was disrupted, the embryos developed from such an unpolarized blastomeres showed the increased number of cells expressing Cdx2. We found that in such experimentally obtained embryos the polarization was delayed until the 16-cell stage. These results suggest that the main factor responsible for upregulation of Cdx2 expression in outer blastomeres, i.e. TE precursors, is their polarity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2012.05.013DOI Listing

Publication Analysis

Top Keywords

embryos developed
12
mouse embryo
8
position cells
8
disrupted embryos
8
blastomeres
6
cdx2
6
cells
6
embryos
6
polarization
5
delay polarization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!