A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. | LitMetric

Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize.

Plant Physiol Biochem

Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade-INCTSal/CNPq, Universidade Federal do Ceará, Caixa Postal 6039, 60440-970 Fortaleza, Ceará, Brazil.

Published: July 2012

Pretreatment in plants is recognized as a valuable strategy to stimulate plant defenses, leading to better plant development. This study evaluated the effects of H₂O₂ leaf spraying pretreatment on plant growth and investigated the antioxidative mechanisms involved in the response of maize plants to salt stress. It was found that salinity reduced maize seedling growth when compared to control conditions, and H₂O₂ foliar spraying was effective in minimizing this effect. Analysis of the antioxidative enzymes catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.1) and superoxide dismutase (EC 1.15.1.1) revealed that H₂O₂ spraying increased antioxidant enzyme activities. Catalase (CAT) was the most responsive of these enzymes to H₂O₂, with higher activity early (48 h) in the treatment, while guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) were responsive only at later stages (240 h) of treatment. Increased CAT activity appears linked to gene expression regulation. Lower malondialdehyde levels were detected in plants with higher CAT activity, which may result from the protective function of this enzyme. Overall, we can conclude that pretreatment with H₂O₂ leaf spraying was able to reduce the deleterious effects of salinity on seedling growth and lipid peroxidation. These responses could be attributed to the ability of H₂O₂ to induce antioxidant defenses, especially CAT activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2012.04.012DOI Listing

Publication Analysis

Top Keywords

cat activity
12
salt stress
8
h₂o₂ leaf
8
leaf spraying
8
seedling growth
8
guaiacol peroxidase
8
ascorbate peroxidase
8
h₂o₂
6
catalase plays
4
plays key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!