Smooth muscle protein 22 alpha-Cre is expressed in myeloid cells in mice.

Biochem Biophys Res Commun

Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

Published: June 2012

Background: Experiments using Cre recombinase to study smooth muscle specific functions rely on strict specificity of Cre transgene expression. Therefore, accurate determination of Cre activity is critical to the interpretation of experiments using smooth muscle specific Cre.

Methods And Results: Two lines of smooth muscle protein 22 α-Cre (SM22α-Cre) mice were bred to floxed mice in order to define Cre transgene expression. Southern blotting demonstrated that SM22α-Cre was expressed not only in tissues abundant of smooth muscle, but also in spleen, which consists largely of immune cells including myeloid and lymphoid cells. PCR detected SM22α-Cre expression in peripheral blood and peritoneal macrophages. Analysis of SM22α-Cre mice crossed with a recombination detector GFP mouse revealed GFP expression, and hence recombination, in circulating neutrophils and monocytes by flow cytometry.

Conclusions: SM22α-Cre mediates recombination not only in smooth muscle cells, but also in myeloid cells including neutrophils, monocytes, and macrophages. Given the known contributions of myeloid cells to cardiovascular phenotypes, caution should be taken when interpreting data using SM22α-Cre mice to investigate smooth muscle specific functions. Strategies such as bone marrow transplantation may be necessary when SM22α-Cre is used to differentiate the contribution of smooth muscle cells versus myeloid cells to observed phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377770PMC
http://dx.doi.org/10.1016/j.bbrc.2012.05.041DOI Listing

Publication Analysis

Top Keywords

smooth muscle
32
myeloid cells
16
muscle specific
12
sm22α-cre mice
12
smooth
8
muscle protein
8
cells
8
specific functions
8
cre transgene
8
transgene expression
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!