A series of oligo(ethylene glycols) was efficiently tosylated by ultrasound procedure within dichloromethane in the presence of triethylamine. Results show that sonochemical synthesis of oligo(ethylene glycol) ditosylates has a double advantage since it does not use catalysts and it drastically reduces the reaction time. This straightforward method represents an eco-friendly alternative to the traditional tosylation by pyridine synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2012.04.010 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
NIT Rourkela: National Institute of Technology Rourkela, Department of Chemistry, NIT Rourkela, 769008, Rourkela, INDIA.
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.
View Article and Find Full Text PDFChemistry
January 2025
Ulm University: Universitat Ulm, Organic Chemistry III, Albert-Einstein-Allee 11, 89081, Ulm, GERMANY.
The efficiency of kinase inhibiting cancer therapeutics is often limited by their poor solubility in water. PEGylation is one possible strategy to improve the solubility of the drug, however, means to cleave these after reaching the target is important to make use of the therapeutic effects of the native drug. Moreover, the length of the PEG chains will have an effect on the solubility and binding.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!