Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The specificity of cohesin-dockerin interactions is critically important for the assembly of cellulosomal enzymes into the multienzyme cellulolytic complex (cellulosome). In order to investigate the origins of the observed specificity, a variety of selected amino acid positions at the cohesin-dockerin interface can be subjected to mutagenesis, and a library of mutants can be constructed. In this chapter, we describe a protein-protein microarray technique based on the high affinity of a carbohydrate-binding module (CBM), attached to mutant cohesins. Using cellulose-coated glass slides, libraries of mutants can be screened for binding to complementary partners. The advantages of this tool are that crude cell lysate can be used without additional purification, and the microarray can be used for screening both large libraries as initial scanning for "positive" plates, and for small libraries, wherein individual colonies are printed on the slide. Since the time-consuming step of purifying proteins can be circumvented, the approach is also appropriate for providing molecular insight into the multicomponent organization of complex cellulosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-415931-0.00024-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!