The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography-quadrupole mass spectrometry (GC-qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2012.03.050DOI Listing

Publication Analysis

Top Keywords

percent composition
12
blends biodiesel
8
biodiesel conventional
8
conventional diesel
8
determine feedstock
8
test set
8
pls predictions
8
jatropha blends
8
soy blends
8
blends
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!