As a continuation of our efforts to discover and develop small molecules as anticancer agents, we identified GRI-394837 as an initial hit from similarity search on RGD and its analogs. Based on GRI-394837, we designed and synthesized a focused set of novel chromenes (4a-e) in a single step using microwave method. All five compounds showed activity in the nanomolar range (IC(50): 7.4-640 nM) in two melanoma, three prostate and four glioma cancer cell lines. The chromene 4e is active against all the cell lines and particularly against the A172 human glioma cell line (IC(50): 7.4 nM). Interestingly, in vitro tubulin polymerization assay shows 4e to be a weak tubulin polymerization inhibitor but it shows very strong cytotoxicity in cellular assays, therefore there must be additional unknown mechanism(s) for the anticancer activity. Additionally, the strong antiproliferative activity was verified by one of the selected chromene (4a) by the NCI 60 cell line screen. These results strongly suggest that the novel chromenes could be further developed as a potential therapeutic agent for a variety of aggressive cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659818PMC
http://dx.doi.org/10.1016/j.bmcl.2012.04.074DOI Listing

Publication Analysis

Top Keywords

anticancer agents
8
novel chromenes
8
cell lines
8
tubulin polymerization
8
substituted 4h-chromenes
4
4h-chromenes anticancer
4
agents continuation
4
continuation efforts
4
efforts discover
4
discover develop
4

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: LIGHT (oLaparib In HRD-Grouped Tumor types; NCT02983799) prospectively evaluated olaparib treatment in patients with platinum-sensitive relapsed ovarian cancer (PSROC) assigned to cohorts by known BRCA mutation (BRCAm) and homologous recombination deficiency (HRD) status: germline BRCAm (gBRCAm), somatic BRCAm (sBRCAm), HRD-positive non-BRCAm, and HRD-negative. At the primary analysis, olaparib treatment demonstrated activity across all cohorts, with greatest efficacy in terms of objective response rate and progression-free survival observed in the g/sBRCAm cohorts. The authors report final overall survival (OS).

View Article and Find Full Text PDF

NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.

View Article and Find Full Text PDF

In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.

View Article and Find Full Text PDF

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!