J Colloid Interface Sci
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Published: August 2012
Two Gemini surfactants with very similar structure but different spacer rigidity, namely 1-dodecanaminium,N,N'-[[(2E)-1,4-dioxo-2-butene-1,4-diyl]bis(oxy-2,1-ethanediyl)]bis[N,N-dimethyl-,bromide] (12-fo-12) and 1-dodecanaminium, N,N'-[(1,4-dioxo-1,4-butanediyl)bis(oxy-2,1-ethanediyl)] bis[N,N-dimethyl-, bromide] (12-su-12), and their monomeric counterpart 1-dodecanaminium, N-[2-(acetyloxy)ethyl]-N,N-dimethyl-, bromide (DTAAB) were synthesized and their aggregation behavior in aqueous solutions was studied by measurements of surface tension, conductivity, isothermal titration calorimetry, dynamic light scattering, and transmission electron microscopy. It was found that the Krafft point of 12-fo-12 was 18.6°C, significantly higher than that of 12-su-12 (7.6°C) and DTAAB (<0°C). The minimum surface areas per surfactant A(min) at the water-air interface of DTAAB, 12-su-12, and 12-fo-12 were determined. It was found that the value of A(min) of DTAAB was larger than half that of 12-su-12 but smaller than half that of 12-fo-12. The values of the degree of association β of the three surfactants were found to be in a sequence of DTAAB>12-su-12>12-fo-12, which was in accord with the sequence of the entropy of micellization. The enthalpies of micellization of the two Gemini surfactants were found to be more negative than double that of DTAAB, and 12-fo-12 had the most negative standard enthalpy of micellization. It was also found that 12-su-12 and DTAAB formed micelles in aqueous solutions, while 12-fo-12 could form micelles and vesicles dependent on the concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.04.052 | DOI Listing |
J Environ Manage
March 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China. Electronic address:
Water-injected fracturing fluids can wet the coal body and reduce the amount of dust produced during coal mining. In order to enhance the wetting performance of fracturing fluids, a Gemini cationic surfactant named Gemini-TOH was innovatively synthesized in this paper using a three-step process. On this basis, a Gemini-TOH/KCl composite fracturing fluid system was developed by adding KCl.
View Article and Find Full Text PDFLangmuir
March 2025
School of Resources and Environment, Shandong University of Technology, Zibo, Shandong 255000, China.
Foam stability critically determines the efficiency of the mineral flotation process. Although the mixed amine Gemini surfactant/anionic surfactants exhibit excellent flotation performance, atomic-level investigations of the mechanism of their impact on foam stability remain limited. This study employs molecular dynamics simulations to investigate the self-aggregation behavior of mixed amine Gemini surfactant/sodium oleate (NaOl) systems with varying spacer chain lengths at the air/water interface.
View Article and Find Full Text PDFMaterials (Basel)
February 2025
HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, 1121 Budapest, Hungary.
Mesoporous silica sieves have been prepared through sol-gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed reaction, using a tetraethyl orthosilicate precursor and bis-quaternary ammonium gemini surfactants with diester spacers of varied lengths as pore-forming agents. The effect of the spacer length on the particle morphology was studied using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, scanning, and transmission electron microscopy (SEM, TEM).
View Article and Find Full Text PDFLangmuir
March 2025
Department of Chemistry, National Institute of Technology Mizoram, Chaltlang, Aizawl 796012, India.
The anticorrosion properties of three amide-linked alkylpyridinium gemini surfactants (ALAPGS), viz., 3,3'-(propanediamide)bis(1--dodecylpyridinium) dibromide (ALDPGS), 3,3'-(propanediamide)bis(1--tetradecylpyridinium) dibromide (ALTPGS), and 3,3'-(propanediamide)bis(1--octadecylpyridinium) dibromide (ALOPGS), were studied on low-carbon steel in 3.5% NaCl through weight loss, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) methods.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan 43023, China.
To enhance the physicochemical properties of zein nanoparticles, zein complexes with two Gemini surfactants (12-3-12 and 12-4-12) were prepared using the anti-solvent method and investigated the physicochemical properties, formation mechanism and antibacterial activity. Results indicated that the optimal mass ratio between zein and Gemini surfactants was at 1:1, and the incorporation of Gemini surfactants significantly improved the surface properties of zein, reducing its surface hydrophobicity and surface tension, thereby enhancing its dispersion in aqueous media. Fluorescence spectroscopy and molecular docking experiments further elucidated the interaction mechanisms between zein and Gemini surfactant, revealing a spontaneous binding process, mainly driven by hydrophobic and hydrogen interaction, and a strong binding affinity of 12-4-12 with zein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.