The objective was to investigate the effects of the transgenic donor cell synchronization method, oocyte sources, and other factors, on production of hLF-gene nucleus transfer dairy goats. Three transfected cell lines from ear biopsies from three 3-mo-old Saanen dairy goats (designated Number 1, Number 2, and Number 3, respectively) were selected as karyoplast donors for somatic cell nuclear transfer (SCNT) after detailed identification (including PCR and sequencing of PCR products). In donor cell cycle synchronization studies, the apoptosis rate of hLF transgenic fibroblasts was not different (P > 0.05) after 3 days of serum starvation or 2 days of contact inhibition. Additionally, there was no effect (P > 0.05) on developmental capacity of reconstructed embryos; however, the kidding rate of recipients in the serum starvation group was higher than that in the contact inhibition group (18 vs. 0%, respectively). The production efficiency of the transgenic cloned goats using donor cells from the Number 1 dairy goat cell line was higher than those using the Number 2 and the Number 3 cell lines (kidding rates were 18, 2, and 0%, respectively, P < 0.05). The oocyte source did not significantly affect the pregnancy rate of hLF-transgenic cloned dairy goats, but more fetuses were aborted when using in vitro matured oocytes compared to in vivo matured oocytes. In summary, utilizing transfected 3-mo-old dairy goat fibroblasts as donor cells, seven live offspring were produced, and the hLF gene was successfully integrated. This study provided additional insights into preparation of donor cells and recipient oocytes for producing transgenic cloned goats through SCNT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2012.03.004 | DOI Listing |
Genes (Basel)
December 2024
Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Background: Runs of homozygosity (ROHs) and heterozygosity (ROHets) serve for the identification of genomic regions as candidates of selection, local adaptation, and population history.
Methods: The present study aimed to comprehensively explore the ROH and ROHet patterns and hotspots in Greek native dairy goats, Eghoria and Skopelos, genotyped with the Illumina Goat SNP50 BeadChip. SNP and functional enrichment analyses were conducted to further characterize hotspots and the candidate genes located within these genomic regions.
Animals (Basel)
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
Goats are essential to the dairy industry in Shaanxi, China, with udder traits playing a critical role in determining milk production and economic value for breeding programs. However, the direct measurement of these traits in dairy goats is challenging and resource-intensive. This study leveraged genotyping imputation to explore the genetic parameters and architecture of udder traits and assess the efficiency of genomic prediction methods.
View Article and Find Full Text PDFParasit Vectors
January 2025
Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia.
Background: Gastrointestinal parasites such as nematodes and coccidia are responsible for significant economic losses in the goat industry globally. An indiscriminate use of antiparasitic drugs, primarily registered for use in sheep and cattle, in goats has resulted in drug-resistant gastrointestinal parasites. Very little is known about the gastrointestinal parasite control practices used by Australian dairy goat farmers that are pivotal for achieving sustainable control of economically important parasites.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
Background: The 3-hydroxybutyrate dehydrogenase 1 (BDH1) mainly participates in the regulation of milk fat synthesis and ketone body synthesis in mammary epithelial cells. In our previous study, BDH1 was identified as a key candidate gene regulating lipid metabolism in mammary glands of dairy goats by RNA-seq. This study aimed to investigate the effect of BDH1 on lipid metabolism in mammary epithelial cells of dairy goats (GMECs).
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand.
Background: In China, brucellosis has resurfaced recently with a discernible spatial distribution, particularly affecting dairy herds and small ruminant populations. However, limited dissemination of knowledge, attitudes, and practices (KAP) for brucellosis control exists among farmers and animal health staff. This study aimed to assess the KAP of brucellosis control and prevention in animal health staff and farmers, with the goal of educating the public regarding the application of efficient brucellosis control and prevention strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!