When biological matter is subjected to ionizing radiation, a wealth of secondary low-energy (<20 eV) electrons are produced. These electrons propagate inelastically, losing energy to the medium until they reach energies low enough to localize in regions of high electron affinity. We have recently shown that in fully solvated DNA fragments, nucleobases are particularly attractive for such excess electrons. The next question is what is their longer-term effect on DNA. It has been advocated that they can lead to strand breaks by cleavage of the phosphodiester C(3')-O(3') bond. Here we present a first-principles study of free energy barriers for the cleavage of this bond in fully solvated nucleotides. We have found that except for dAMP, the barriers are on the order of 6 kcal/mol, suggesting that bond cleavage is a regular feature at 300 K. Such low barriers are possible only as a result of solvent and thermal fluctuations. These findings support the notion that low-energy electrons can indeed lead to strand breaks in DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja303776r | DOI Listing |
Int J Biol Macromol
January 2025
Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. Electronic address:
Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.
View Article and Find Full Text PDFOrg Lett
January 2025
Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
An asymmetric photoredox catalytic Minisci-type reaction between α-bromide amides and imine-containing azaarenes has been successfully developed. This catalyst system employs a chiral phosphoric acid alongside 3DPAFIPN as a photosensitizer. The reaction produces a diverse array of valuable amides, featuring azaarene-substituted tertiary carbon stereocenters at the β-position, in high yields (up to 85%) and good to excellent enantioselectivities (up to >99% enantiomeric excess (ee)).
View Article and Find Full Text PDFAdv Mater
January 2025
National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng, 475004, China.
The poor efficiency and stability of blue Quantum Dot Light-Emitting diodes (QLED) hinders the practical applications of QLEDs full-color displays. Excessive electron injection, insufficient hole injection, and abundant defects on the surface of quantum dots (QD) are the main issues limiting the performance of blue devices. Herein, an in situ treatment with bipolar small molecule polydentate ligand-guanidine chloride (GACl) is proposed to simultaneously suppress excessive electron injection, patch surface defects of QDs and enhance hole injection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!