Human deoxyuridine triphosphatase (dUTPase) inhibition is a promising approach to enhance the efficacy of thymidylate synthase (TS) inhibitor based chemotherapy. In this study, we describe the discovery of a novel class of human dUTPase inhibitors based on the conformation restriction strategy. On the basis of the X-ray cocrystal structure of dUTPase and its inhibitor compound 7, we designed and synthesized two conformation restricted analogues, i.e., compounds 8 and 9. These compounds exhibited increased in vitro potency compared with the parent compound 7. Further structure-activity relationship (SAR) studies identified a compound 43 with the highest in vitro potency (IC(50) = 39 nM, EC(50) = 66 nM). Furthermore, compound 43 had a favorable oral PK profile and exhibited potent antitumor activity in combination with 5-fluorouracil (5-FU) in the MX-1 breast cancer xenograft model. These results suggested that a dUTPase inhibitor may have potential for clinical usage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm300416h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!