This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10715762.2012.694428DOI Listing

Publication Analysis

Top Keywords

aged rats
28
nadph oxidase
16
oxidase activity
16
decreased liver
8
liver nadph
8
activity increased
8
mitochondrial biogenesis
8
age-dependent autophagy
8
oxidative stress
8
mitochondriogenesis muscle
8

Similar Publications

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Seizures elicited by transcorneal 6 Hz stimulation in developing rats.

PLoS One

January 2025

Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.

Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.

Background: Our previous studies reported that D-galactose (D-gal) administration for four to eight weeks caused metabolic disturbance, brain mitochondrial dysfunction, and brain aging, leading to cognitive dysfunction in similar with natural aging condition. Spermidine is a polyamine that can be found naturally. Spermidine has been showed the beneficial effects on various models, such as attenuating metabolic/gut impairments in obesity, and ameliorating memory loss in aged model.

View Article and Find Full Text PDF

Background: Clinical studies indicate that mid-life dietary patterns are a risk factor for cognitive decline. Adherence to a Mediterranean diet (MeDi) may promote healthy brain aging in contrast to a Western diet (WD), yet these diets have not been examined in pre-clinical models. We hypothesized that consumption of the MeDi would have better cognitive performance compared to the Western diet in middle-aged rats.

View Article and Find Full Text PDF

Background: The orexin/hypocretin neuropeptide system, primarily found in the lateral hypothalamus and perifornical region, modulates sleep, wakefulness, appetite, and cognitive function. One region with dense orexinergic projections is the basal forebrain (BF), which is the major source of acetylcholine in the neocortex and limbic structures such as the hippocampus. The basal forebrain cholinergic system mediates cognition and dysfunction is one of the key hallmarks of Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!