The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa--Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae)--by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant 'hot-spot' for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351404 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037089 | PLOS |
FEMS Microbiol Ecol
January 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
The southeastern Tibetan Plateau (SETP) is the preeminent summer heavy precipitation region within the Tibetan Plateau (TP). However, the large-scale circulation types and dynamics driving summer heavy precipitation in the SETP remain inadequately elucidated. Using the hierarchical clustering method, two distinctive atmospheric circulation patterns associated with heavy precipitation were identified: the Tibetan Plateau vortex type (TPVT, constituting 56.
View Article and Find Full Text PDFSci Rep
January 2025
Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, 650100, China.
In response to the impacts of climate change and the intensity of human activities in the alpine meadow region, there is an urgent need to determine the ecological quality and its drivers in alpine meadow areas. In this paper, Shangri-La was adopted as an example, the spatial and temporal evolution patterns of the ecological quality in Shangri-La were determined in both natural and social dimensions, and the contributions of various driving factors were analyzed. The conclusions are as follows: (1) the natural status index of Shangri-La from 2000 to 2020 generally showed a spatial distribution pattern that decreased from the central townships toward the north and south, and the social pressure index was irregularly distributed in high-value areas and continuously distributed in low-value areas.
View Article and Find Full Text PDFNat Commun
January 2025
College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
Permafrost is a potentially important source of deglacial carbon release alongside deep-sea carbon outgassing. However, limited proxies have restricted our understanding in circumarctic regions and the last deglaciation. Tibetan Plateau (TP), the Earth's largest low-latitude and alpine permafrost region, remains underexplored.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Life Science, Qinghai Normal University/Academy of Plateau Science and Sustainability, Xining 810008, China.
As the most effective way to remedy and reconstruct the degraded ecosystems, vegetation restoration could affect soil carbon and nitrogen cycles and water balance. We examined the responses of carbon, nitrogen, and water in 0-200 cm soil layer to vegetation restoration years by analyzing their distribution characteristics across a restoration chronosequence of plantation (5, 10, 15, 20, and 25 years) in alpine sandy region of the Qinghai-Tibetan Plateau. The results showed that the content and storage of soil organic carbon (SOC) and soil total nitrogen (STN) increased significantly, while that of soil inorganic carbon (SIC) decreased significantly with restoration years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!