Background: In the honey bee, the age-related and socially regulated transition of workers from in-hive task performance (e.g., caring for young) to foraging (provisioning the hive) is associated with changes in many behaviors including the 24-hour pattern of rhythmic activity. We have previously shown that the hive-bee to forager transition is associated with extensive changes in brain gene expression. In this study, we test the possible function of a subset of these genes in daily rhythmic activity pattern using neural-targeted RNA interference (RNAi) of an orthologous gene set in Drosophila melanogaster.
Principal Findings: Of 10 genes tested, knockdown of six affected some aspect of locomotor activity under a 12 h:h light:dark regime (LD). Inos affected anticipatory activity preceding lights-off, suggesting a possible clock-dependent function. BM-40-SPARC, U2af50 and fax affected peak activity at dawn without affecting anticipation or overall inactivity (proportion of 15-min intervals without activity), suggesting that these effects may depend on the day-night light cycle. CAH1 affected overall inactivity. The remaining gene, abl, affected peak activity levels but was not clearly time-of-day-specific. No gene tested affected length of period or strength of rhythmicity in constant dark (DD), suggesting that these genes do not act in the core clock.
Significance: Taking advantage of Drosophila molecular genetic tools, our study provides an important step in understanding the large set of gene expression changes that occur in the honey bee transition from hive bee to forager. We show that orthologs of many of these genes influence locomotor activity in Drosophila, possibly through both clock-dependent and -independent pathways. Our results support the importance of both circadian clock and direct environmental stimuli (apart from entrainment) in shaping the bee's 24-hour pattern of activity. Our study also outlines a new approach to dissecting complex behavior in a social animal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350530 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029157 | PLOS |
Sci Rep
December 2024
Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. Electronic address:
Cationic surface-active agents (CSAAs) can persist in ambient water, be ingested by bees, and contaminate honey. Residues of CSAAs in honey remains unknown. This study measured the residual levels of five CSAAs in 271 honey samples from China using ultrahigh-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Civil & Environmental Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.
View Article and Find Full Text PDFElectromagn Biol Med
December 2024
Department of Electrical and Electronics Engineering, Recep Tayyip Erdoğan University, Rize, Türkiye.
Due to the increase in data rate in mobile communication and the widespread use of mobile internet, electromagnetic communication systems are increasing daily. This situation causes increases in the use of more mobile communication devices and environmental non-ionizing Electromagnetic Field (EMF) levels. The rise of bee deaths and colony losses in beekeeping parallel to the increase of the EMF sources cause the concept of "electromagnetic pollution" to be considered among the reasons.
View Article and Find Full Text PDFSci Total Environ
December 2024
Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay. Electronic address:
Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!