16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m(-3). Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346808 | PMC |
http://dx.doi.org/10.1100/2012/781291 | DOI Listing |
iScience
January 2025
Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
is a Gram-positive bacterium, also known as Group A (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern.
View Article and Find Full Text PDFSci Rep
January 2025
Institut de Recherche en Astrophysique et Planétologie, UPS/CNRS/CNES, F-31400, Toulouse, France.
The radioactive gas radon-222, a fluid and aerosol tracer in Earth's lithosphere and atmosphere, can also reveal subtle rock physics processes in extraterrestrial environments, such as those involving water, but remains poorly constrained in planetary bodies due to the limited number of samples available. Here we measure the effective radium-226 concentration (EC) of six Martian and nine lunar meteorites to derive radon source terms for Martian and lunar rocks. EC values are 0.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong, P.R. China.
Pt/α-MoC catalysts exhibit exceptional activity in low-temperature water-gas shift reactions. However, quantitatively identifying and fine-tuning the active sites has remained a significant challenge. In this study, we reveal that fully exposed monolayer Pt nanoclusters on molybdenum carbides demonstrate mass activity that exceeds that of bulk molybdenum carbide catalysts by one to two orders of magnitude at 100-200 °C for low-temperature water-gas shift reactions.
View Article and Find Full Text PDFBurns
January 2025
Department of Burns and Wound Center, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou 310009, PR China. Electronic address:
Background: On June 13, 2020, an explosion involving a liquefied natural gas (LNG) tanker truck occurred in eastern China. Fifteen patients with extremely severe burns (referred to as "June 13" patients) were treated in the burn-intensive care unit (ICU) joint ward within the general ICU.
Methods: A multidisciplinary treatment team comprising 129 doctors, 126 nurses, and 165 auxiliary staff members was assembled.
J Comput Chem
January 2025
Department of Chemistry, 1102 Natural Sciences II, University of California Irvine, Irvine, California, USA.
The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!