The employment of monoclonal antibodies (Mabs) to identify disease-associated biomarkers in clinical samples represents the underlying principle for many diagnostic tests. To date, these have been principally developed for protein targets with few reported applications for lipids due to their hydrophobicity and poor immunogenicity. Oxysterols represent a family of lipids implicated in diverse human diseases where Mab-based detection assays could have a profound effect on their utility as clinical biomarkers. These are usually identified in patients' samples by mass- spectrometry based approaches. Here, we describe an antibody phage-library based screening methodology for generating a recombinant monoclonal antibody (RAb) targeting the oxysterol-15-ketocholestane (15-KA), a lipid implicated in multiple sclerosis and Autoimmune Encephalomyelitis (EAE). The antibody is highly specific for 15-KA and shows little or no binding activity for other closely related oxysterols. We employ RAb2E9 to address the controversy over whether 15-KA is a true biomarker for MS/EAE and show that 15-KA is undetectable in serum taken from mice with EAE using antibody based detection methodologies; a finding confirmed by mass-spectrometry analysis. This study demonstrates the technical feasibility of using phage display to isolate highly specific antibodies against poorly immunogenic, small molecule lipids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344257 | PMC |
http://dx.doi.org/10.3390/ijms13044937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!