High-performance membranes with multi-permselectivity for CO2 separation.

Adv Mater

Chemical Engineering Research Center, School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, PR China.

Published: June 2012

Multi-permselective membranes with diffusivity-selectivity, solubility-selectivity, and reactivity-selectivity for CO(2) separation are prepared by interfacial polymerization. The membranes are able to efficiently separate CO(2) from various light gases (H(2) , CH(4) and N(2) ) due to the optimized membrane structure and the comprehensive utilization of distinctions between CO(2) and light gases in size, condensability, and reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201200638DOI Listing

Publication Analysis

Top Keywords

co2 separation
8
co2 light
8
light gases
8
high-performance membranes
4
membranes multi-permselectivity
4
co2
4
multi-permselectivity co2
4
separation multi-permselective
4
multi-permselective membranes
4
membranes diffusivity-selectivity
4

Similar Publications

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis.

Molecules

December 2024

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield.

View Article and Find Full Text PDF

Solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) represent a promising clean energy solution. In the case of SOFCs, they offer efficiency and minimal to zero CO emissions when used to convert chemical energy into electricity. When SOFC systems are operated in regenerative mode for water electrolysis, the SOFCs become solid oxide electrolyzer cells (SOECs).

View Article and Find Full Text PDF

Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction.

Angew Chem Int Ed Engl

January 2025

Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.

Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.

View Article and Find Full Text PDF

A perspective on field-effect in energy and environmental catalysis.

Chem Sci

December 2024

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China

The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!