The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PTP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PTP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2012.05.001DOI Listing

Publication Analysis

Top Keywords

ptp domains
12
catalytic activity
8
activity bi-domain
8
bi-domain protein
8
protein tyrosine
8
tyrosine phosphatase
8
domains bi-domain
8
bi-domain ptps
8
inactive domain
8
domain activates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!