Fungal dimorphism is the capacity of certain species of fungi to grow in the form of budding yeasts or mycelium depending on the environmental conditions. This characteristic is a complex phenomenon that involves modifications of the molecular machinery in response to different environmental signals. Through the use of microarrays, in this work we identified genes involved in the early stages of the yeast-to-mycelium transition of Yarrowia lipolytica induced by a shift in pH of the medium. As controls, yeast and mycelium monomorphic mutants were used, identifying by this mean a total of 61 upregulated and 165 downregulated genes specifically involved in dimorphism. Determination of the putative function of these genes was accomplished by means of BLAST analyses which showed that they were involved mainly in processes such as remodeling and biogenesis of the cell wall, membrane trafficking and N- or O-glycosylation. Some of these genes were identified by homology with Saccharomyces cerevisiae genes, and found to play a role during the dimorphic transition in both systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resmic.2012.03.002 | DOI Listing |
Bioresour Technol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:
Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.
View Article and Find Full Text PDFBiotechnol J
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.
View Article and Find Full Text PDFFollowing a request from the European Commission, the European Food Safety Authority was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of canthaxanthin, regarding the addition of a new production route, by the yeast CBS 146148. The additive is already authorised as sensory feed additive for use in feed for chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying, ornamental fish, ornamental birds and ornamental breeder hens. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concludes that canthaxanthin produced with CBS 146148 is considered safe for the target species, the consumer and the environment under the current authorised conditions of use.
View Article and Find Full Text PDFFollowing a request from the European Commission, the EFSA was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of the feed additive consisting of a preparation of canthaxanthin (CAROPHYLL® Red 10%), regarding the addition of a new production route, by the yeast CBS 146148 and to modify the additive specifications by substituting ethoxyquin by 4.4% butylated hydroxytoluene (BHT) and increasing the limit for dichloromethane to 80 mg/kg. The additive is already authorised as zootechnical feed additive for breeder hens.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!