Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This Communication demonstrates the generation of over 300 phase-separated systems-ranging from two to six phases-from mixtures of aqueous solutions of polymers and surfactants. These aqueous multiphase systems (MuPSs) form self-assembling, thermodynamically stable step-gradients in density using a common solvent, water. The steps in density between phases of a MuPS can be very small (Δρ ≈ 0.001 g/cm(3)), do not change over time, and can be tuned by the addition of co-solutes. We use two sets of similar objects, glass beads and pellets of different formulations of Nylon, to demonstrate the ability of MuPSs to separate mixtures of objects by differences in density. The stable interfaces between phases facilitate the convenient collection of species after separation. These results suggest that the stable, sharp step-gradients in density provided by MuPSs can enable new classes of fractionations and separations based on density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881359 | PMC |
http://dx.doi.org/10.1021/ja303183z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!