Organic thiols are known to react with gold surface to form self-assembled monolayers (SAMs), which can be used to produce materials with highly attractive properties. Although the structure of various SAMs is widely investigated, some aspects of their formation still represent a matter of debate. One of these aspects is the mechanism of S-H bond dissociation in thiols upon interaction with gold. This work presents a new suggestion for this mechanism on the basis of DFT study of methanethiol interaction with a single gold atom and a Au(20) cluster. The reaction path of dissociation is found to be qualitatively independent of the model employed. However, the highest activation barrier of S-H bond dissociation on the single gold atom (12.9 kcal/mol) is considerably lower than that on the Au(20) cluster (28.9 kcal/mol), which can be attributed to the higher extent of gold unsaturation. The energy barrier of S-H cleavage decreases by 4.6 kcal/mol in the presence of the second methanethiol molecule at the same adsorption site on the model gold atom. In the case of the Au(20) cluster we have observed the phenomenon of hydrogen transfer from one methanethiol molecule to another, which allows reducing the energy barrier of dissociation by 9.1 kcal/mol. This indicates the possibility of the "relay" hydrogen transfer to be the key step of the thiol adsorption observed for the SAMs systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp303001x | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA.
Oxidative stress, associated with excessive production of reactive oxygen and nitrogen species (ROS, RNS), contributes to the development and progression of many ailments, such as aging, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, diabetes, cancer, preeclampsia or multiple sclerosis. While phenols and polyphenols are the most studied antioxidants structurally similar compounds such as anilines or thiophenols are sporadically analyzed despite their radical scavenging potential. This work assesses the impact of structural features of phenols and thiophenols on their antioxidant activity.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
The synthesis, isolation, and full characterization of a series of NHC-copper perfluoro-alkoxide complexes are reported. Their exceptional stability resides with the steric hindrance of the nonafluoro--butyl alkoxide moiety, which exhibits a strong electron withdrawing effect. These new Cu(I) complexes are synthons that can permit the activation of acidic N-H and S-H bonds.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
In our effort to establish a direct synthetic approach for bis(dihydridoborate) complexes of first-row transition metals, we have investigated the reactivity of [Cp*Fe(dppe)Cl] (dppe =1,2-bis(diphenylphosphino)ethane) with Na[BHL] (L =2-mercaptopyridine (mp) and 2-mercaptobenzothiazole (mbz)) that led to the formation of iron(II) dihydridoborate complexes, [Cp*Fe{κ-S,H,H-(HBH(L))}] 1 a-b (L=mp (1 a) and L=mbz (1 b)). Further, in an attempt to isolate the bis(dihydridoborate) complex of iron by the insertion of borane into the κ-N,S-chelated iron complex, [(dppe)Fe{κ-N,S-(mp)}] (2), we have isolated and structurally characterized a rare example of dimeric iron bis(dihydridoborate) complex, [Fe{κ-S,H,H-(HBH(mp))}], ΛΔ/ΔΛ-3 as pair of enantiomers. Interestingly, these enantiomers ΛΔ/ΔΛ-3 have two trans-[Fe{κ-S,H,H-(HBH(mp))}] moieties bridged through sulfur atoms of 2-mercaptopyridinyl ligands, where the iron centres are hepta-coordinated.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Malaviya National Institute of Technology, Jaipur, J L N Marg, Jaipur-302017, India.
H-bonded complexes between CHCl and HS have been studied in a cold and inert argon matrix using IR spectroscopy. Both molecules were found to act as both a H-bond donor and acceptor, resulting in two different conformers. The more stable one (binding energy 3.
View Article and Find Full Text PDFNat Commun
December 2024
Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz, Germany.
Water is characterized by strong intermolecular hydrogen bonds (H-bonds) between molecules. The two hydrogen atoms in one water molecule can form H-bonds of dissimilar length. Although intimately connected to water's anomalous properties, the details and the origins of the asymmetry have remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!