Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09687688.2012.687461 | DOI Listing |
Biol Open
January 2025
Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.
In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear.
View Article and Find Full Text PDFJ Eukaryot Microbiol
January 2025
Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
All insect trypanosomatids of the subfamily Strigomonadinae harbor a proteobacterial symbiont in their cytoplasm and unique ultrastructural cell organization. Here, we report an unexpected finding within the Strigomonadinae subfamily: the identification of a new species lacking bacterial symbiont, represented by two isolates obtained from Calliphoridae flies in Brazil and Uganda. This species is hereby designated as Kentomonas inusitatus n.
View Article and Find Full Text PDFCureus
December 2024
Department of Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA.
Systemic lupus erythematosus (SLE) is a prevalent autoimmune condition worldwide resulting from the loss of tolerance against self-antigens. The constitutional symptoms of SLE are well-known, including fatigue, fever, myalgia, weight loss, arthralgia, arthritis, malar rash, and photosensitivity. These symptoms often overshadow the impacts SLE can have on all body systems, with the renal system frequently impacted.
View Article and Find Full Text PDFCureus
December 2024
Trauma and Acute Care Surgery, Good Samaritan University Hospital, West Islip, USA.
High-energy blunt thoracic trauma is a highly morbid condition. When a pneumonectomy is required in such a setting, the mortality rate increases significantly. Here, we present a case of a motor vehicular crash (MVC) in which the patient suffered bilateral bronchial injuries requiring emergent thoracotomy, pneumonectomy, bronchial stenting, and initiation of venovenous extracorporeal membrane oxygenation (VV ECMO).
View Article and Find Full Text PDFCell Death Discov
January 2025
Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!