We present the first results from a novel multiparent advanced generation inter-cross (MAGIC) population derived from four elite wheat cultivars. The large size of this MAGIC population (1579 progeny), its diverse genetic composition and high levels of recombination all contribute to its value as a genetic resource. Applications of this resource include interrogation of the wheat genome and the analysis of gene-trait association in agronomically important wheat phenotypes. Here, we report the utilization of a MAGIC population for the first time for linkage map construction. We have constructed a linkage map with 1162 DArT, single nucleotide polymorphism and simple sequence repeat markers distributed across all 21 chromosomes. We benchmark this map against a high-density DArT consensus map created by integrating more than 100 biparental populations. The linkage map forms the basis for further exploration of the genetic architecture within the population, including characterization of linkage disequilibrium, founder contribution and inclusion of an alien introgression into the genetic map. Finally, we demonstrate the application of the resource for quantitative trait loci mapping using the complex traits plant height and hectolitre weight as a proof of principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2012.00702.x | DOI Listing |
J Trace Elem Med Biol
December 2024
Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India; Affiliated to The Tamil Nadu Dr. MGR Medical University, Chennai, India. Electronic address:
Introduction: Observational studies have found that higher iron levels are associated with an increased risk of diabetes mellitus. Given the limitations of causal inferences from observational studies and the expensive and time-consuming nature of randomized controlled trials, Mendelian randomization analysis presents a reasonable alternative to study causal relationships. Previous MR analyses studying iron levels and diabetes have used indirect markers of iron levels, such as serum ferritin, and found conflicting results.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Background: High myopia (HM), characterized by a severe myopic refractive error, stands as a leading cause of visual impairment and blindness globally. HM is a multifactorial ocular disease that presents high genetic heterogeneity. Employing a genetic risk score (GRS) is useful for capturing genetic susceptibility to HM.
View Article and Find Full Text PDFJ Fish Biol
December 2024
Field School, Coconut Grove, Florida, USA.
Due to the logistical and financial challenges in studying migratory marine species, there is relatively limited knowledge of the reproductive biology, behavior, and habitat use of many ecologically important marine megafauna species, including the Atlantic tarpon Megalops atlanticus. Here, we present a novel observation using consumer-grade aerial drones to observe, quantify the scale of, and classify behaviors within a previously unreported tarpon aggregation (N = 182) over the course of a 2-day fish aggregation event. After the event, we analysed and compared observed behaviors (e.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA.
GWAS of a new MAGIC population containing alleles from five tetraploid Gossypium species identified novel fiber QTL and confirmed previously identified stable QTL. Identification of loci and underlying genes for fiber quality traits will facilitate genetic improvement in cotton fiber quality. In this research, a genome-wide association study (GWAS) was carried out for fiber quality attributes using a new multi-parent advanced generation inter-cross (MAGIC) population consisting of 372 recombinant inbred lines (RILs).
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
A simplified theoretical description of multiple-quantum excitation and mixing for nuclear magnetic resonance of half-integer quadrupolar nuclei is presented. The approach recasts the multiple-quantum nutation behavior in terms of reduced excitation and mixing curves through a scaling of the first-order offset frequency by the quadrupolar coupling constant. The two-dimensional correlation of the static first-order anisotropic line shape to the second-order anisotropic magic-angle-spinning (MAS) line shape is utilized to transform the three-dimensional integral over the three Euler angles into a single integral over the dimensionless first-order offset parameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!