The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1-5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC(50) value 20 μM), whereas analogues 8 and 10 were inactive (IC(50) values >100 μM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree-Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC(50) values 5.5 and 3.8 μM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC(50) values >300 μM).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm300345zDOI Listing

Publication Analysis

Top Keywords

ic50 values
12
excitatory amino
8
amino acid
8
combination initio
8
initio hartree-fock
8
hartree-fock calculations
8
inhibited eaat1
8
μm analogues
8
structure-activity relationship
4
relationship study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!