Efficient interaction with the sensory environment requires the rapid reallocation of attentional resources between spatial locations, perceptual features, and objects. It is still a matter of debate whether one single domain-general network or multiple independent domain-specific networks mediate control during shifts of attention across features, locations, and objects. Here, we employed functional magnetic resonance imaging to directly compare the neural mechanisms controlling attention during voluntary and stimulus-driven shifts across objects and locations. Subjects either maintained or switched voluntarily and involuntarily their attention to objects located at the same or at a different visual location. Our data demonstrate shift-related activity in multiple frontoparietal, extrastriate visual, and default-mode network regions, several of which were commonly recruited by voluntary and stimulus-driven shifts between objects and locations. However, our results also revealed object- and location-selective activations, which, moreover, differed substantially between voluntary and stimulus-driven attention. These results suggest that voluntary and stimulus-driven shifts between objects and locations recruit partially overlapping, but also separable, cortical regions, implicating the parallel existence of domain-independent and domain-specific reconfiguration signals that initiate attention shifts in dependence of particular demands.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhs116DOI Listing

Publication Analysis

Top Keywords

voluntary stimulus-driven
20
stimulus-driven shifts
16
shifts objects
16
objects locations
16
attention voluntary
8
objects
7
shifts
6
locations
6
voluntary
5
stimulus-driven
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!