Stimulating the effector functions of tumor-infiltrating T lymphocytes (TIL) in primary and metastatic tumors could improve active and adoptive T-cell therapies for cancer. Abnormal glycolysis, high lactic acid production, proton accumulation, and a reversed intra-extracellular pH gradient are thought to help render tumor microenvironments hostile to roving immune cells. However, there is little knowledge about how acidic microenvironments affect T-cell immunity. Here, we report that lowering the environmental pH to values that characterize tumor masses (pH 6-6.5) was sufficient to establish an anergic state in human and mouse tumor-specific CD8(+) T lymphocytes. This state was characterized by impairment of cytolytic activity and cytokine secretion, reduced expression of IL-2Rα (CD25) and T-cell receptors (TCR), and diminished activation of STAT5 and extracellular signal-regulated kinase (ERK) after TCR activation. In contrast, buffering pH at physiologic values completely restored all these metrics of T-cell function. Systemic treatment of B16-OVA-bearing mice with proton pump inhibitors (PPI) significantly increased the therapeutic efficacy of both active and adoptive immunotherapy. Our findings show that acidification of the tumor microenvironment acts as mechanism of immune escape. Furthermore, they illustrate the potential of PPIs to safely correct T-cell dysfunction and improve the efficacy of T-cell-based cancer treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-11-1272 | DOI Listing |
Discov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Methods Cell Biol
January 2025
Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, AB, Canada. Electronic address:
Breast cancer is the most common cancer in women and continues to have a significant impact in cancer-associated deaths worldwide. Investigating the complex roles of infiltrating immune subsets within the tumor microenvironment (TME) will enable a better understanding of disease progression and reveal novel therapeutic strategies for patients with breast cancer. The mammary-specific expression of polyomavirus middle T oncoprotein (MMTV-PyMT) was first established in 1992 by William Muller and is the most commonly used genetically engineered mouse model (GEMM) for breast cancer research.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
Evidence has shown that T-cell receptors (TCRs) that recognize the same epitopes may not be the exact TCR clonotypes but have slightly different TCR sequences. However, the changes in the genomic and transcriptomic signatures of these highly homologous T cells during immunotherapy remain unknown. Here, we examined the evolutionary features in circulating TCR clonotypes observed in tumors (tumor-infiltrating lymphocyte (TIL)-TCRs) by combining single-cell RNA/TCR sequencing of longitudinal blood samples and TCR sequencing of tumor tissue from a patient treated with anti-cytotoxic T-lymphocyte-associated protein 4/programmed cell death protein-1 therapy.
View Article and Find Full Text PDFMod Pathol
January 2025
Interdisciplinary Oncology, University of British Columbia, Vancouver, BC, Canada; MAPcore, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Assessment of the tumor immune microenvironment can be used as a prognostic tool for improved survival and as a predictive biomarker for treatment benefit, particularly from immune modulating treatments including cytotoxic chemotherapy. Using Digital Spatial Profiling (DSP), we studied the tumor immune microenvironment of 522 breast cancer cases by quantifying 35 immune biomarkers on tissue microarrays from the MA.5 phase III clinical trial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!