Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons, which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with plasma membrane calcium-ATPase pump isoform 2 (PMCA2). Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95 (postsynaptic density-95), which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2, PSD-95, and α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369694 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5972-11.2012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!