The antennal lobe (AL) is the primary olfactory center in insect brains. It receives sensory input from the olfactory sensory neurons (OSNs) and sends, through its projection neurons (PNs), reformatted output to secondary olfactory centers, including the mushroom body (MB) calyx and the lateral horn (LH) in the protocerebrum. By injecting dye into the AL of wild-type Drosophila, we identified previously unknown direct pathways between the AL and the ventrolateral, superior medial, and posterior lateral protocerebra. We found that most of these areas in the protocerebrum are connected with the AL through multiple tracts, suggesting that these areas are sites of convergence for olfactory information. Furthermore, areas such as the superior medial protocerebrum now appear to receive olfactory output both directly from the AL and indirectly from lobes of the MB and the LH, suggesting a degree of functional interaction among these areas. We also analyzed the length and number of fibers in each tract. We compare our results obtained from wild-type flies with recent results from transgenic strains and discuss how information about odorants is distributed to multiple protocerebral areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132881PMC
http://dx.doi.org/10.1002/cne.23149DOI Listing

Publication Analysis

Top Keywords

wild-type drosophila
8
superior medial
8
olfactory
6
areas
5
dye fills
4
fills reveal
4
reveal additional
4
additional olfactory
4
olfactory tracts
4
protocerebrum
4

Similar Publications

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disease characterized by symptoms like ataxia, dementia, and epilepsy, caused by an expansion of CAG repeats in the ATROPHIN 1 (ATN1) gene.
  • Researchers developed Drosophila (fruit fly) models that express either normal ATN1 (Q7) or a pathogenic version with expanded repeats (Q88), revealing that the pathogenic variant significantly reduces fly motility, lifespan, and affects internal structures more severely than the normal version.
  • RNA sequencing identified pathways related to protein quality control that are altered by pathogenic ATN1, and subsequent genetic experiments highlighted the
View Article and Find Full Text PDF

Background: Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa.

View Article and Find Full Text PDF
Article Synopsis
  • - Forkhead box (Fox) transcription factors (TFs) are crucial for heart development in mammals, influencing cardiac progenitor cell roles and positions.
  • - Researchers found that the Jumu gene plays a key regulatory role, with many downstream targets linked to cell division in cardiac progenitor cells.
  • - The study highlights Jumu as a central hub in a network that controls cardiac progenitor cell division, supported by the interactions of identified gene targets.
View Article and Find Full Text PDF

The physiological role and the molecular architecture of the circadian clock in fully developed organisms are well established. Yet, we have a limited understanding of the function of the clock during ontogenesis. We have used a null mutant () of the clock gene () in to ask whether PER may play a role during normal brain development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!