Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645890 | PMC |
http://dx.doi.org/10.1002/cne.23147 | DOI Listing |
Nat Commun
December 2024
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.
View Article and Find Full Text PDFNeurol Neurochir Pol
December 2024
Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
Introduction And State Of The Art: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects many organs throughout its course, most frequently the joints, skin and kidneys. Both the central (CNS) and peripheral (PNS) nervous systems are also often affected. T he involvement of the CNS has a negative prognosis in lupus patients.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Departments of Neurosurgery, The First Center of Chinese, PLA General Hospital, Beijing, China.
Background: Treatment of peripheral nerve defects is a major concern in regenerative medicine. This study therefore aimed to explore the efficacy of a neural graft constructed using adipose mesenchymal stem cells (ADSC), acellular microtissues (MTs), and chitosan in the treatment of peripheral nerve defects.
Methods: Stem cell therapy with acellular MTs provided a suitable microenvironment for axonal regeneration, and compensated for the lack of repair cells in the neural ducts of male 8-week-old Sprague Dawley rats.
Clin Ther
December 2024
Neurology Department, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom.
Purpose: An increased prevalence of peripheral polyneuropathy (PN) in Parkinson's disease (PD) associated with greater functional impairment has previously been reported. A possible cause has been suggested as levodopa therapy. The aim of this real-world study was to assess the prevalence and the characteristics of PN in PD and to investigate the putative association between PN and oral levodopa.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
Objective: Neuronal Intranuclear Inclusion Disease (NIID) is a neurodegenerative disease affecting the central and peripheral nerves. We aimed to assess the pathophysiological features of peripheral nerve dysfunction in NIID.
Methods: We observed six unrelated NIID patients through clinical records, nerve conduction studies, and multiple measures of motor nerve excitability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!