In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to characterize which TnI gene and protein isoforms are expressed in the different muscle types of rainbow trout (Oncorhynchus mykiss) and to determine whether isoform expression changes in response to cold acclimation (4°C). Semiquantitative real-time PCR was used to characterize the expression of seven different TnI genes. The sequence of these genes, cloned from Atlantic salmon (Salmo salar) and rainbow trout, were obtained from the National Center for Biotechnology Information databases. One-dimensional gel electrophoresis and tandem mass spectrometry were used to identify the TnI protein isoforms expressed in each muscle type. Interestingly, the results indicate that each muscle type expresses the gene transcripts of up to seven TnI isoforms. There are significant differences, however, in the expression pattern of these genes between muscle types. In addition, cold acclimation was found to increase the expression of specific gene transcripts in each muscle type. The proteomics analysis demonstrates that fast skeletal and cardiac muscle contain three TnI isoforms, whereas slow skeletal muscle contains four. No other vertebrate muscle to date has been found to express as many TnI protein isoforms. Overall this study underscores the complex molecular composition of teleost striated muscle and suggests there is an adaptive value to the unique TnI profiles of each muscle type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00127.2012 | DOI Listing |
Hormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Departments of Pathology.
The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.
View Article and Find Full Text PDFMitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200233, China.
Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!