The calcium/calmodulin-dependent kinase II (CaMKII) participates with Ras to Raf-1 activation, and it is necessary for activation of the extracellular signal-regulated kinase (ERK) by different factors in epithelial and mesenchimal cells. Raf-1 activation is a complex multistep process, and its maximal activation is achieved by phosphorylation at Y341 by Src and at S338 by other kinase/s. Although early data proposed the involvement of p21-activated kinase 3 (Pak3), the kinase phosphorylating S338 remains to be definitively identified. In this study, we verified the hypothesis that CaMKII phosphorylates Raf-1 at Ser338. To do so, we determined the role of CaMKII in Raf-1 and ERK activation by oncogenic Ras and other factors. Serum, fibronectin, Src (Y527) and Ras (V12) activated CaMKII and ERK, at different extents. The inhibition of CaMKII attenuated Raf-1 and ERK activation by all these factors. CaMKII was also necessary for the phosphorylation of Raf-1 at S338 by serum, fibronectin and Ras. Conversely, inhibition of Pak3 activation by blocking phosphatidylinositol 3-kinase was ineffective. The direct phosphorylation of S338 Raf-1 by CaMKII was demonstrated in vitro by interaction of purified kinases. These results demonstrate that Ras activates CaMKII, which, in turn, phosphorylates Raf-1 at S338 and participates in ERK activation upon different stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.20543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!