Ligand efficient fragments binding to PDK1 were identified by an NMR fragment-based screening approach. Computational modeling of the fragments bound to the active site led to the design and synthesis of a series of novel 6,7-disubstituted thienopyrimidin-4-one compounds, with low micromolar inhibitory activity against PDK1 in a biochemical enzyme assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.04.080 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Goethe-Universitat Frankfurt am Main Fachbereich 14 Biochemie Chemie und Pharmazie, Institute for Pharmaceutical Chemistry, GERMANY.
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Amity Institute of Biotechnology, Amity University, Kolkata, India.
The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F region of enzyme ATP synthase of , thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties.
View Article and Find Full Text PDFMolecules
December 2024
Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore 138670, Singapore.
Fragment-based drug discovery is a powerful approach in drug discovery, applicable to a wide range of targets. This method enables the discovery of potent compounds that can modulate target functions, starting from fragment compounds that bind weakly to the targets. While biochemical, biophysical, and cell-based assays are commonly used to identify fragments, F-NMR spectroscopy has emerged as a powerful tool for exploring interactions between biomolecules and ligands.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Drug Design and Optimization, Campus E8.1, 66123, Saarbrücken, GERMANY.
With antimicrobial resistance (AMR) reaching alarming levels, new anti-infectives with unpreceded mechanisms of action are urgently needed. The 2-C-methylerythritol-D-erythritol-4-phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram-negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment-based compound class identified through crystallographic screening of PaIspD.
View Article and Find Full Text PDFBioorg Chem
December 2024
School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC = 1.67 μM) against PTP1B, which displayed 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!