Protein subcellular localization aims at predicting the location of a protein within a cell using computational methods. Knowledge of subcellular localization of viral proteins in a host cell or virus-infected cell is important because it is closely related to their destructive tendencies and consequences. Prediction of viral protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods specialized for viral proteins are only used to deal with the single-location proteins. To better reflect the characteristics of multiplex proteins, a new predictor, called Virus-ECC-mPLoc, has been developed that can be used to deal with the systems containing both singleplex and multiplex proteins by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and by hybridizing the gene ontology information with the dipeptide composition information. It can be utilized to identify viral proteins among the following six locations: (1) viral capsid, (2) host cell membrane, (3) host endoplasmic reticulum, (4) host cytoplasm, (5) host nucleus, and (6) secreted. Experimental results show that the overall success rates thus obtained by Virus-ECC-mPLoc are 86.9% for jackknife test and 87.2% for independent data set test, which are significantly higher than that by any of the existing predictors. As a user-friendly web-server, Virus-ECCmPLoc is freely accessible to the public at the web-site http://levis.tongji.edu.cn:8080/bioinfo/Virus-ECC-mPLoc/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866511320030009 | DOI Listing |
Plant Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China. Electronic address:
The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFNat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle.
View Article and Find Full Text PDFComput Biol Chem
January 2025
School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China. Electronic address:
Long non-coding RNAs (lncRNAs) are strongly associated with cellular physiological mechanisms and implicated in the numerous diseases. By exploring the subcellular localizations of lncRNAs, we can not only gain crucial insights into the molecular mechanisms of lncRNA-related biological processes but also make valuable contributions towards the diagnosis, prevention, and treatment of various human diseases. However, conventional experimental techniques tend to be laborious and time-intensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!