Rapid and efficient separation/purification of pure metallofullerenes M(x)@C(n) (M = metal; x = 1, 2; n > 70) and carbide metallofullerenes of the type M(y)C(2)@C(n-2) (y = 2, 3, 4; n - 2 > 68) has been reported. The present method utilizes rapid and almost perfect preferential formation of TiCl(4) (generally known as a Lewis acid)-metallofullerene complexes, which easily decompose to provide pure metallofullerene powders by a simple water treatment. The present method enables one to separate the metallofullerenes up to >99% purity within 10 min without using any type of high-performance liquid chromatography (HPLC). It is found that the oxidation potentials of the metallofullerenes are crucial factors for efficient purification. The current separation/purification technique may open a brand-new era for inducing further applications and commercialization of endohedral metallofullerenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja3030627DOI Listing

Publication Analysis

Top Keywords

metallofullerenes
6
non-hplc rapid
4
rapid separation
4
separation metallofullerenes
4
metallofullerenes empty
4
empty cages
4
cages ticl4
4
ticl4 lewis
4
lewis acid
4
acid rapid
4

Similar Publications

Gas-phase synthesis and detection of boron-doped nitride clusterfullerenes and a large variety of monometallofullerenes have been achieved using a pulsed laser vaporization cluster source. Density functional theory (DFT) calculations show that the electronic structures of boron-doped endohedral metallofullerenes differ from those of the pristine all-carbon cages due to the lack of one electron upon boron substitution. For monometallofullerenes, this is likely the main reason for the somewhat different abundance distribution observed for boron-doped with respect to all-carbon cages.

View Article and Find Full Text PDF

Metal cluster fullerenes are a class of molecular nanomaterials with complex structures and novel properties. An in-depth study of their formation mechanism is a key topic for developing new high-yield synthesis methods and promoting the practical application of such molecular nanomaterials. To elucidate the formation mechanism of ScN@C, a representative sub-class of metal cluster fullerenes, this study developed a ReaxFF force field parameter set CNSc.

View Article and Find Full Text PDF

Spin probe for dynamics of the internal cluster in endohedral metallofullerenes.

Chem Commun (Camb)

December 2024

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.

Endohedral metallofullerenes (EMFs) are constructed by fullerene cages encapsulating various metal atoms or metal clusters, which usually exhibit some motion. However, due to the fact that the elusive endohedral dynamics are related to many factors, it remains a challenge to image the motion of internal species. Recently, the electron spin was found to be a sensitive probe to detect the motion of internal species in EMFs.

View Article and Find Full Text PDF

Since the discovery of La@C, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds.

View Article and Find Full Text PDF

As global temperatures increase due to climate change, the accumulation of excess heat on Earth presents a valuable resource that can be harnessed for electricity generation using thermoelectric materials. However, the intricate structures of bulk thermoelectric materials pose significant challenges to their comprehensive understanding and limit performance. Additionally, their relatively high production costs present practical obstacles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!