Background: The aim of the present study was to investigate the expression and activity of epithelial sodium channel (ENaC) in hyperoxia-induced bronchopulmonary dysplasia (BPD) in neonatal rats.

Methods: Neonatal rats were exposed to hyperoxia to establish BPD models (control group was exposed to air), lung water was measured and Western blot was applied to detect the expression of three homologous subunits: α-, β- and γ-ENaC in the lung tissues. Furthermore, ATII cells were isolated from neonatal rats, and primarily cultured under normoxic or hyperoxic conditions. The ENaC expression was also examined in these cells. In addition, the amiloride-sensitive Na(+) currents induced by hyperoxia were recorded using the whole-cell patch clamp technique.

Results: The α-ENaC expression was increased after 5 days of hyperoxia in rat lung tissues, whereas not after 1, 3 and 7 days. ATII cells showed α-ENaC expression was reduced after 1 and 2 days' hyperoxia, but no change after 3 days. In contrast, β- and γ-ENaC expression was increased after hyperoxia in both in vivo and in vitro experiments. The amiloride-sensitive Na(+) currents in hyperoxia-exposed ATII cells were also increased, which was consistent with the upregulated expression of β- and γ-ENaC.

Conclusion: Hyperoxia upregulates the expression of ENaC, especially β- and γ-ENaC subunits, in both neonatal rat lung tissues and ATII cells. Hyperoxia also enhanced the activity of ENaC in neonatal rat ATII cells. Dysfunctional transport of Na(+) may not be a key factor involving pulmonary edema at the early stage of BPD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-200X.2012.03662.xDOI Listing

Publication Analysis

Top Keywords

atii cells
20
neonatal rats
12
β- γ-enac
12
lung tissues
12
expression
9
expression activity
8
activity epithelial
8
epithelial sodium
8
sodium channel
8
hyperoxia-induced bronchopulmonary
8

Similar Publications

PLAC8 attenuates pulmonary fibrosis and inhibits apoptosis of alveolar epithelial cells via facilitating autophagy.

Commun Biol

January 2025

Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.

Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.

View Article and Find Full Text PDF

Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis.

Cell Mol Life Sci

December 2024

Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.

Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.

View Article and Find Full Text PDF

Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm. While the ensuing compression to the fetal lung causes lung hypoplasia, specific cellular phenotypes and developmental signaling defects in the alveolar epithelium in CDH are not fully understood. Employing lung samples from human CDH, a surgical lamb model and a nitrogen rat model, we investigate whether lung compression impairs alveolar epithelial differentiation and Yes-associated protein (YAP)-mediated mechanosensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!