MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus.

J Evol Biol

Istituto per lo Studio degli Ecosistemi, Sesto Fiorentino, via Madonna del Piano 10, Florence, Italy.

Published: August 2012

Females of several vertebrate species selectively mate with males on the basis of the major histocompatibility complex (MHC) genes. As androgen-mediated maternal effects have long-lasting consequences for the adult phenotype, both mating and reproductive success may depend on the combined effect of MHC genotype and exposure to androgens during early ontogeny. We studied how MHC-based mate choice in ring-necked pheasants (Phasianus colchicus) was influenced by an experimental in ovo testosterone (T) increase. There was no conclusive evidence of in ovo T treatment differentially affecting mate choice in relation to MHC genotype. However, females avoided mating with males with a wholly different MHC genotype compared with males sharing at least one MHC allele. Females also tended to avoid mating with MHC-identical males, though not significantly so. These findings suggest that female pheasants preferred males with intermediate MHC dissimilarity. Male MHC heterozygosity or diversity did not predict the expression of ornaments or male dominance rank. Thus, MHC-based mating preferences in the ring-necked pheasant do not seem to be mediated by ornaments' expression and may have evolved mainly to reduce the costs of high heterozygosity at MHC loci for the progeny, such as increased risk of autoimmune diseases or disruption of coadapted gene pools.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1420-9101.2012.02534.xDOI Listing

Publication Analysis

Top Keywords

mhc genotype
16
mate choice
12
mhc
9
choice ring-necked
8
ring-necked pheasant
8
phasianus colchicus
8
males
5
genotype predicts
4
mate
4
predicts mate
4

Similar Publications

The effect of HLA genotype on disease onset and severity in CTLA-4 insufficiency.

Front Immunol

January 2025

Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.

View Article and Find Full Text PDF

Due to their involvement in pathogen-mediated immune responses, the hypervariable genes of the Major Histocompatibility Complex (MHC) have become a paradigm for investigating the evolution and maintenance of genetic (adaptive) diversity, contextually providing insight into the viability of wild populations, which is meaningful for conservation. Here, we provide the first preliminary characterization of MHC polymorphism and evolution in trouts from Albania, a known hotspot of Salmonid diversity harboring ecologically and phylogenetically distinct native (threatened) taxa. Overall, 36 trout-including Lake Ohrid-endemic and , and both riverine and lacustrine native brown trout (the complex) from the Drin-Skadar drainage-were genotyped at the MHC- locus through next-generation amplicon sequencing.

View Article and Find Full Text PDF

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Background: Both intrinsic renal cells and immune cells contribute to driving renal inflammation and damage. However, the respective roles of intrinsic renal cells and immune cells in crescentic glomerulonephritis, and the key molecular factors driving pathogenesis are still unclear.

Methods: The roles of intrinsic renal cells and renal infiltrating immune cells in crescent formation were explored using renal transplantation after experimental anti-GBM disease induction in 129x1/svJ and C57BL/6J mice.

View Article and Find Full Text PDF

Revealing novel CD8 T-cell epitopes from the H5N1 avian influenza virus in HBW/B1 haplotype ducks.

Vet Res

December 2024

National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.

The duck CD8 T-cell response effectively defends against H5N1 highly pathogenic avian influenza virus (HPAIV) infection, but the recognized peptide is rarely identified. Here, we found that the ratio of CD8 T cells and the expression of IFN-γ and cytotoxicity-associated genes, including granzyme A/K, perforin and IL2, at 7 days post-infection in peripheral blood mononuclear cells (PBMCs) from B1 haplotype ducks significantly increased in the context of defending against H5N1 AIV infection in vivo. Moreover, similar results were observed in cultured and sorted H5N1 AIV-stimulated duck CD8 T cells in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!