Aim: This study tested the hypothesis that non-α-adrenergic mechanisms contribute to systemic vascular conductance (SVC) in a reflex-specific manner during the sympathoexcitatory manoeuvres.

Methods: Twelve healthy subjects underwent lower-body negative pressure (LBNP, -40 mmHg) as well as static handgrip exercise (HG, 20% of maximal force) followed by post-exercise forearm circulatory occlusion (PECO, 5 min each) with and without α-adrenergic blockade induced by phentolamine (PHE). Aortic blood flow, finger blood pressure and superficial femoral artery blood flow were measured to calculate cardiac output, SVC and leg vascular conductance (LVC) during the last minute of each intervention.

Results: Mean arterial pressure (MAP) decreased more during LBNP with PHE compared with saline (-7 ± 7 vs. -2 ± 5%, P = 0.016). PHE did not alter the MAP response to HG (+20 ± 12 and +24 ± 16%, respectively, for PHE and saline) but decreased the change in MAP during PECO (+12 ± 7 vs. +21 ± 14%, P = 0.005). The decrease in SVC and LVC with LBNP did not differ between saline and PHE trials (-13 ± 10 vs. -17 ± 10%, respectively, for SVC, P = 0.379). In contrast, the SVC response to HG increased from -9 ± 12 with saline to + 5 ± 15% with PHE (P = 0.002) and from -16 ± 15 with saline to +1 ± 16% with PHE during PECO (P = 0.003). LVC responses to HG or PECO were not different from saline with PHE.

Conclusions: Non-α-adrenergic vasoconstriction was present during LBNP. The systemic vasoconstriction during static exercise and isolated muscle metaboreflex activation, in the absence of leg vasoconstriction, was explained by an α-adrenergic mechanism. Therefore, non-α-adrenergic vasoconstriction is more emphasized during baroreflex, but not metaboreflex-mediated sympathetic activation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1748-1716.2012.02447.xDOI Listing

Publication Analysis

Top Keywords

vascular conductance
12
systemic vascular
8
lower-body negative
8
negative pressure
8
static exercise
8
muscle metaboreflex
8
metaboreflex activation
8
blood flow
8
non-α-adrenergic vasoconstriction
8
phe
7

Similar Publications

The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.

View Article and Find Full Text PDF

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Highly sensitized (HS) patients in need of kidney transplantation (KTx) typically spend a longer time waiting for compatible kidneys, are unlikely to receive an organ offer, and are at increased risk of antibody-mediated rejection (AMR). Desensitization using imlifidase, which is more rapid and removes total body immunoglobulin G (IgG) to a greater extent than other methods, enables transplantation to occur between HLA-incompatible (HLAi) donor-recipient pairs and allows patients to have greater access to KTx. However, when the project was launched there was limited data and clinical experience with desensitization in general and with imlifidase specifically.

View Article and Find Full Text PDF

Objectives: To determine the frequency of undiagnosed hypertension among the diabetic patients with micro vascular complications.

Method: This is a descriptive case series conducted at Department of Medicine, Ghurki Trust Teaching Hospital, in this six month stud which enrolled 213 patients between 18-60 years from March 28, 2021 to September 28, 2021, having diabetes with microvascular complications. These patients were not previously diagnosed as hypertensives.

View Article and Find Full Text PDF

Background: Blue rubber bleb nevus syndrome (BRBNS) is a rare venous malformation disorder. Currently, there is no standard therapy for this disease. However, lauromacrogol, a sclerosant extensively utilized in the management of vascular malformations, has been applied in the treatment of BRBNS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!