Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrile hydratases (NHases) are Fe(III)- and Co(III)-containing hydrolytic enzymes that convert nitriles into amides. The metal-center is contained within an N(2)S(3) coordination motif with two post-translationally modified cysteinates contained in a cis arrangement, which have been converted into a sulfinate (R-SO(2)(-)) and a sulfenate (R-SO(-)) group. Herein, we utilize Ru L-edge and ligand (N-, S-, and P-) K-edge X-ray absorption spectroscopies to probe the influence that these modifications have on the electronic structure of a series of sequentially oxidized thiolate-coordinated Ru(II) complexes ((bmmp-TASN)RuPPh(3), (bmmp-O(2)-TASN)RuPPh(3), and (bmmp-O(3)-TASN)RuPPh(3)). Included is the use of N K-edge spectroscopy, which was used for the first time to extract N-metal covalency parameters. We find that upon oxygenation of the bis-thiolate compound (bmmp-TASN)RuPPh(3) to the sulfenato species (bmmp-O(2)-TASN)RuPPh(3) and then to the mixed sulfenato/sulfinato speices (bmmp-O(3)-TASN)RuPPh(3) the complexes become progressively more ionic, and hence the Ru(II) center becomes a harder Lewis acid. These findings are reinforced by hybrid DFT calculations (B(38HF)P86) using a large quadruple-ζ basis set. The biological implications of these findings in relation to the NHase catalytic cycle are discussed in terms of the creation of a harder Lewis acid, which aids in nitrile hydrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic202453c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!