In the zwitterionic title compound, C(17)H(11)NO(5), the dihedral angle between the two aromatic rings is 76.90 (7)°. The dihedral angles between the carboxyl groups and the benzene ring are 64.02 (9) and 21.67 (9)°, the larger angle being associated with an intra-molecular N-H⋯O(carbox-yl) hydrogen bond, resulting from proton transfer from the carb-oxy-lic acid group to the quinoline N atom and giving an S(9) ring motif. In the crystal, mol-ecules are connected by O-H⋯O hydrogen bonds into chains extending along the b-axis direction. An overall two-dimensional network structure is formed through π-π inter-actions between the quinoline rings [minimum ring-centroid separation = 3.6068 (6) Å].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344484 | PMC |
http://dx.doi.org/10.1107/S1600536812013980 | DOI Listing |
Mater Today Bio
February 2025
Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.
Massive blood loss is the main cause of prehospital trauma-related death, the development of rapid and effective hemostatic materials is imminent. Injectable hydrogels have the advantages of covering irregular bleeding sites and quickly closing the wound. However, its inherent viscosity can easily precipitate tissue adhesion and other complications.
View Article and Find Full Text PDFCryst Growth Des
January 2025
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
We report enhanced proton conductivity promoted by a structural phase transition of MFM-504(Cu)-DMF to MFM-504(Cu)-MeOH and to MFM-504(Cu)-OH via ligand substitution upon exposure to MeOH and HO vapors, respectively. MFM-504(Cu)-DMF can be synthesized by the solvothermal reaction of Cu(NO)·3HO and the flexible zwitterionic ligand, imidazolium-1,3-bis(methylenedicarboxylate) (imidc), to afford a unique layered interwoven network structure. MFM-504(Cu)-OH shows a proton conductivity of 5.
View Article and Find Full Text PDFAmino Acids
January 2025
Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China.
Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM).
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!