Meiosis ensures the reduction of the genome before the formation of generative cells and promotes the exchange of genetic information between homologous chromosomes by recombination. Essential for these events are programmed DNA double strand breaks (DSBs) providing single-stranded DNA overhangs after their processing. These overhangs, together with the RADiation sensitive51 (RAD51) and DMC1 Disrupted Meiotic cDNA1 (DMC1) recombinases, mediate the search for homologous sequences. Current models propose that the two ends flanking a meiotic DSB have different fates during DNA repair, but the molecular details remained elusive. Here we present evidence, obtained in the model plant Arabidopsis thaliana, that the two recombinases, RAD51 and DMC1, localize to opposite sides of a meiotic DSB. We further demonstrate that the ATR kinase is involved in regulating DMC1 deposition at meiotic DSB sites, and that its elimination allows DMC1-mediated meiotic DSB repair even in the absence of RAD51. DMC1's ability to promote interhomolog DSB repair is not a property of the protein itself but the consequence of an ASYNAPTIC1 (Hop1)-mediated impediment for intersister repair. Taken together, these results demonstrate that DMC1 functions independently and spatially separated from RAD51 during meiosis and that ATR is an integral part of the regular meiotic program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442587 | PMC |
http://dx.doi.org/10.1105/tpc.112.098459 | DOI Listing |
Trends Genet
December 2024
Department of Biology, New York University, New York, NY 10003, USA. Electronic address:
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, South Korea.
Double-strand breaks (DSBs) are a formidable threat to genome integrity, potentially leading to cancer and various genetic diseases. The prolonged lifespan of mammalian oocytes increases their susceptibility to DNA damage over time. While somatic cells suppress DSB repair during mitosis, oocytes exhibit a remarkable capacity to repair DSBs during meiotic maturation.
View Article and Find Full Text PDFPLoS Genet
December 2024
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom.
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Meiosis in males is a critical process that ensures complete spermatogenesis and genetic diversity. However, the key regulators involved in this process and the underlying molecular mechanisms remain unclear. Here, we report an essential role of the mA methyltransferase METTL16 in meiotic sex chromosome inactivation (MSCI), double-strand break (DSB) formation, homologous recombination and SYCP1 deposition during male meiosis.
View Article and Find Full Text PDFbioRxiv
November 2024
Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065.
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic and gametocidal potential, so cells must foster SPO11's beneficial functions while minimizing its risks. SPO11 mechanism and regulation remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!