Background And Aims: Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.

Scope: We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then 'scale up' to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.

Conclusions: To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380596PMC
http://dx.doi.org/10.1093/aob/mcs100DOI Listing

Publication Analysis

Top Keywords

functional traits
20
functional
8
functional trait
8
global environmental
8
communities ecosystems
8
traits
8
invader abundance
8
impacts invasive
8
invasive plants
8
invasive species
8

Similar Publications

As the Army continues to adapt to evolving mission demands and global threats, those who execute the mission - both soldiers and Department of the Army (DA) civilians - must also adapt to changing occupational demands and requirements. Occupational stress within the military community is a threat to health and wellbeing that impacts not only individual soldiers and civilian personnel, but also units, families, and the broader military community. Hardiness is an operational requirement for military success, spirituality might be a means to positively impact soldier and DA Civilian hardiness.

View Article and Find Full Text PDF

Background: Cholelithiasis is influenced by various factors, including genetic elements identified in genome-wide association studies (GWAS), but their biological functions are not fully understood.

Methods: Analyzing data from the Finngen database with 37,041 cholelithiasis cases and 330,903 controls, this study combined SNP data from GTEx v8 and linkage disequilibrium data from the 1000 Genomes Project. Using the TWAS FUSION protocol and SMR analysis, it investigated the relationship between gene expression and cholelithiasis, employing colocalization tests and conditional analyses to explore causality.

View Article and Find Full Text PDF

The fibula, despite being traditionally overlooked compared to the femur and the tibia, has recently received attention in primate functional morphology due to its correlation with the degree of arboreality (DOA). Highlighting further fibular features that are associated with arboreal habits would be key to improving palaeobiological inferences in fossil specimens. Here we present the first investigation on the trabecular bone structure of the primate fibula, focusing on the distal epiphysis, across a vast array of species.

View Article and Find Full Text PDF

Introduction: , a protein kinase located on human chromosome 21, plays a role in postembryonic neuronal development and degeneration. Alterations to have been consistently associated with cognitive functioning and neurodevelopmental disorders (e.g.

View Article and Find Full Text PDF

The cyanobacterium causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the phycosphere microbiome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!