Energetics of stalk intermediates in membrane fusion are controlled by lipid composition.

Proc Natl Acad Sci U S A

Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

Published: June 2012

We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent lipid monolayers. We observe that the stalk structure is highly universal in different lipid systems. The associated curvatures change in a subtle, but systematic fashion upon changes in lipid composition. In addition, we have studied the hydration interaction prior to the transition from the lamellar to the stalk phase. The results indicate that facilitating dehydration is the key to promote stalk formation, which becomes favorable at an approximately constant interbilayer separation of 9.0 ± 0.5 Å for the investigated lipid compositions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382523PMC
http://dx.doi.org/10.1073/pnas.1119442109DOI Listing

Publication Analysis

Top Keywords

lipid composition
8
lipid
6
energetics stalk
4
stalk intermediates
4
intermediates membrane
4
membrane fusion
4
fusion controlled
4
controlled lipid
4
composition x-ray
4
x-ray diffraction
4

Similar Publications

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

Quantitative fatty acid signature analysis (QFASA) is a common method of estimating the composition of prey species in the diets of consumers from polar and temperate ecosystems in which lipids are an important source of energy. A key characteristic of QFASA is that the large number of fatty acids that typically comprise lipids permits the dietary contributions of a correspondingly large number of prey types to be estimated. Several modifications to the original QFASA methods have been suggested in the literature and a significant extension of the original model published in 2017 allows simultaneous estimation of both diet proportions and calibration coefficients, which are metabolic constants in the model whose values must otherwise be estimated in independent feeding experiments.

View Article and Find Full Text PDF

Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.

View Article and Find Full Text PDF

Description of six novel species sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., isolated from mangrove ecosystem.

Int J Syst Evol Microbiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.

Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.

View Article and Find Full Text PDF

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!