Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids.

Lab Chip

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.

Published: July 2012

Optofluidics offers a number of potentially transformative advantages for photonic systems. At present however there are a number of technological roadblocks that prevent the practical integration of liquid-state elements into traditional high-speed solid-state photonic systems. Two of the most important of these are the need for continuous resupply of liquids and the difficulty in shuttling light between the liquid- and solid-states. In this paper we present an integrated system that solves both these problems. For the first time we demonstrate direct evanescent and end-fire coupling between liquid- and solid-state waveguides and an on-chip fluid core/cladding separation and recirculation system that reduces the consumption of liquids more than 200 fold over the state of the art. The device is operated continuously for over 20 h without performance degradation or requiring the replenishment of liquids. We believe that our system represents an important step towards the development of practical optofluidically enabled photonic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc40191fDOI Listing

Publication Analysis

Top Keywords

photonic systems
12
resupply liquids
8
continuous operation
4
operation hybrid
4
hybrid solid-liquid
4
solid-liquid state
4
state reconfigurable
4
photonic
4
reconfigurable photonic
4
system
4

Similar Publications

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Experimental realization of valley vortex states in water wave crystals.

Sci Bull (Beijing)

January 2025

Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou 310058, China. Electronic address:

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Dynamic Interferometry for Freeform Surface Measurement Based on Machine Learning-Configured Deformable Mirror.

Sensors (Basel)

January 2025

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical freeform surfaces are widely used in imaging and non-imaging systems due to their high design freedom. In freeform surface manufacturing and assembly, dynamic freeform surface measurement that can guide the next operation remains a challenge. To meet this urgent need, we propose a dynamic interferometric method based on a machine learning-configured deformable mirror (DM).

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!