Exhaustion of CD8(+) T cells and upregulation of programmed death 1 (PD-1), a negative regulator of T cell activation, are characteristic features of individuals chronically infected with human immunodeficiency virus type 1. In a previous study, we showed in mice that a dendritic cell-directed lentiviral vector (DCLV) system encoding the human immunodeficiency virus (HIV)-1 Gag protein was an efficient vaccine modality to induce a durable Gag-specific T cell immune response. In this study, we demonstrate that blocking of the PD-1/PD-1 ligand (PD-L) inhibitory signal via an anti-PD-L1 antibody generated an enhanced HIV-1 Gag-specific CD8(+) immune response following both a single round of DCLV immunization and a homologous prime/boost regimen. The prime/boost regimen combined with PD-L1 blockade generated very high levels of Gag-specific CD8(+) T cells comprising several valuable features: improved ability to produce multiple cytokines, responding to a broader range of Gag-derived epitopes, and long-lasting memory. This enhanced cellular immune response generated by DCLV immunization combined with anti-PD-L1 blockade correlated with improved viral control following challenge with Gag-expressing vaccinia virus. Taken together, our studies offer evidence to support the use of PD-1/PD-L1 blockade as an adjuvant modality to enhance antigen-specific immune responses elicited by T cell-based immunizations such as DCLV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437589 | PMC |
http://dx.doi.org/10.1038/mt.2012.98 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!