AI Article Synopsis

  • Pseudovitamin D-deficiency rickets (PDDR) is a genetic disorder caused by mutations in the 1α-hydroxylase enzyme, which is essential for vitamin D metabolism.
  • Ten mutations in the CYP27B1 gene were identified across eight Chinese families, including six novel missense mutations and three novel deletion mutations.
  • Functional tests showed that these missense mutations retain only about 5.5-12.1% of the normal enzyme activity, linking these genetic changes to the disease's symptoms.

Article Abstract

Pseudovitamin D-deficiency rickets (PDDR) is an autosomal recessive disorder resulting from a defect in renal 25-hydroxyvitamin D 1α-hydroxylase, the key enzyme in the pathway of vitamin D metabolism. We identified ten different mutations in the 1α-hydroxylase gene (CYP27B1) in eight Chinese families with PDDR by DNA-sequence analysis. Six of them are novel missense mutations: G57V, G73W, L333F, R432C, R459C, and R492W; three are novel deletion mutations: c48-60del, c1310delG, and c1446delA; and an insertion mutation c1325-1332insCCCACCC reported previously. Functional assay revealed that the missense mutants identified in this study retain 5.5-12.1% 1α-hydroxylase activity of the wild type. The study describes nine novel mutations in addition to 37 known mutations of CYP27B1 gene and shows the correlation between these mutations and the clinical findings of 1α-hydroxylase deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2012.05.006DOI Listing

Publication Analysis

Top Keywords

novel mutations
8
mutations cyp27b1
8
cyp27b1 gene
8
mutations
6
1α-hydroxylase
5
novel
4
gene lead
4
lead reduced
4
reduced activity
4
activity 1α-hydroxylase
4

Similar Publications

Unraveling the genetic spectrum of inherited deaf-blindness in Portugal.

Orphanet J Rare Dis

January 2025

Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Hospitais da Universidade de Coimbra (HUC), ULS Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.

Background: Syndromic genetic disorders affecting vision can also cause hearing loss, and Usher syndrome is by far the most common etiology. However, many other conditions can present dual sensory impairment. Accurate diagnosis is essential for providing patients with genetic counseling, prognostic information, and appropriate resources.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Sotorasib is a novel KRAS inhibitor that has shown robust efficacy, safety, and tolerability in patients with KRAS mutation. The objectives of the population pharmacokinetic (PK) analysis were to characterize sotorasib population PK in healthy subjects and patients with advanced solid tumors with KRAS mutation from 6 clinical studies, evaluate the effects of intrinsic and extrinsic factors on PK parameters, and perform simulations to further assess the impact of identified covariates on sotorasib exposures. A two-compartment disposition model with three transit compartments for absorption and time-dependent clearance and bioavailability well described sotorasib PK.

View Article and Find Full Text PDF

Environmental degradation due to the rapid increase in CO₂ emissions is a pressing global challenge, necessitating innovative solutions for accurate prediction and policy development. Machine learning (ML) techniques offer a robust approach to modeling complex relationships between various factors influencing emissions. Furthermore, ML models can learn and interpret the significance of each factor's contribution to the rise of CO.

View Article and Find Full Text PDF

TSC complex decrease the expression of mTOR by regulated miR-199b-3p.

Sci Rep

January 2025

Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.

The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this study, besides a reported variation, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!