Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of new bisbenzylisoquinoline alkaloids was partially synthesized from tetrandrine and fangchinoline and evaluated for their ability to reverse P-glycoprotein-mediated multidrug resistance (MDR) in cancer cells. All the test compounds increased the intracellular accumulation rate of rhodamine 123 in MDR cells (Bel7402 and HCT8), and most exhibited more potent MDR-reversing activity relative to the reference compound verapamil. Compounds 8, 10, 13, and 14 enhanced intracellular accumulation of doxorubicin in Bel7402 and HCT8 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10286020.2012.680443 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!